众所周知,很难拥有一个可靠且强大的框架来将多代理深入强化学习算法与实用的多机器人应用联系起来。为了填补这一空白,我们为称为MultiroBolearn1的多机器人系统提出并构建了一个开源框架。该框架构建了统一的模拟和现实应用程序设置。它旨在提供标准的,易于使用的模拟方案,也可以轻松地将其部署到现实世界中的多机器人环境中。此外,该框架为研究人员提供了一个基准系统,以比较不同的强化学习算法的性能。我们使用不同类型的多代理深钢筋学习算法在离散和连续的动作空间中使用不同类型的多代理深钢筋学习算法来证明框架的通用性,可扩展性和能力。
translated by 谷歌翻译
如今,基础模型已成为人工智能中的基本基础设施之一,铺平了通往通用情报的方式。但是,现实提出了两个紧急挑战:现有的基础模型由英语社区主导;用户通常会获得有限的资源,因此不能总是使用基础模型。为了支持中文社区的发展,我们介绍了一个名为Fengshenbang的开源项目,该项目由认知计算与自然语言研究中心(CCNL)领导。我们的项目具有全面的功能,包括大型预培训模型,用户友好的API,基准,数据集等。我们将所有这些都包装在三个子项目中:风水次模型,风水框架和狂热基准。 Fengshenbang的开源路线图旨在重新评估中国预培训的大型大型模型的开源社区,促使整个中国大型模型社区的发展。我们还希望构建一个以用户为中心的开源生态系统,以允许个人访问所需的模型以匹配其计算资源。此外,我们邀请公司,大学和研究机构与我们合作建立大型开源模型的生态系统。我们希望这个项目将成为中国认知情报的基础。
translated by 谷歌翻译
我们研究了一个实用的问题,但尚未探讨问题:从不同飞行高度的角度来看,无人机如何在环境中感知。与始终从地面角度进行感知的自动驾驶不同,由于特定的任务,飞行无人机可能会灵活地改变其飞行高度,这需要能力才能使视点不变感知。为了减少飞行数据注释的努力,我们考虑了一种地面到意见知识蒸馏方法,同时仅使用地面视点的标记数据和飞行视点的未标记数据。为此,我们提出了一个渐进的半监督学习框架,该框架具有四个核心组成部分:一个密集的观点采样策略,将垂直飞行高度的范围分配为一组均匀分布的小部分,在每个高度下,我们采样了从该角度来看的数据;最近的邻居伪标记,以在前一个视点上学习的模型来注入最近的邻居视点的标签; MixView在不同观点之间生成增强图像以减轻观点差异;以及逐渐学习的渐进蒸馏策略,直到达到最大飞行高度为止。我们收集一个合成的数据集和一个现实世界数据集,我们进行了广泛的实验,以表明我们的方法为不同的飞行高度带来了有希望的结果。
translated by 谷歌翻译
在无监督的域自适应(UDA)语义分割中,基于蒸馏的方法目前在性能上占主导地位。但是,蒸馏技术需要使多阶段的过程和许多培训技巧复杂化。在本文中,我们提出了一种简单而有效的方法,可以实现高级蒸馏方法的竞争性能。我们的核心思想是从边界和功能的观点充分探索目标域信息。首先,我们提出了一种新颖的混合策略,以产生具有地面标签的高质量目标域边界。与以前的作品中的源域边界不同,我们选择了高信心目标域区域,然后将其粘贴到源域图像中。这样的策略可以使用正确的标签在目标域(目标域对象区域的边缘)中生成对象边界。因此,可以通过学习混合样品来有效地捕获目标域的边界信息。其次,我们设计了多层对比损失,以改善目标域数据的表示,包括像素级和原型级对比度学习。通过结合两种建议的方法,可以提取更多的判别特征,并且可以更好地解决目标域的硬对象边界。对两个常用基准测试的实验结果(\ textit {i.e。},gta5 $ \ rightarrow $ cityScapes and synthia $ \ rightarrow $ cityScapes)表明,我们的方法在复杂的蒸馏方法上取得了竞争性能。值得注意的是,对于Synthia $ \ rightarrow $ CityScapes方案,我们的方法以$ 57.8 \%$ MIOU和$ 64.6 \%$ MIOU的16堂课和16堂课实现了最先进的性能。代码可在https://github.com/ljjcoder/ehtdi上找到。
translated by 谷歌翻译
在本文中,我们介绍了2022年多模式情感分析挑战(MUSE)的解决方案,其中包括Muse-Humor,Muse-Rection和Muse Surns Sub-Challenges。 2022年穆斯穆斯(Muse 2022)着重于幽默检测,情绪反应和多模式的情感压力,利用不同的方式和数据集。在我们的工作中,提取了不同种类的多模式特征,包括声学,视觉,文本和生物学特征。这些功能由Temma和Gru融合到自发机制框架中。在本文中,1)提取了一些新的音频功能,面部表达功能和段落级文本嵌入以进行准确的改进。 2)我们通过挖掘和融合多模式特征来显着提高多模式情感预测的准确性和可靠性。 3)在模型培训中应用有效的数据增强策略,以减轻样本不平衡问题并防止模型形成学习有偏见的主题字符。对于博物馆的子挑战,我们的模型获得了0.8932的AUC分数。对于Muse Rection子挑战,我们在测试集上的Pearson相关系数为0.3879,它的表现优于所有其他参与者。对于Muse Surst Sub-Challenge,我们的方法在测试数据集上的唤醒和价值都优于基线,达到了0.5151的最终综合结果。
translated by 谷歌翻译
在本文中,我们提出了PETRV2,这是来自多视图图像的3D感知统一框架。基于PETR,PETRV2探讨了时间建模的有效性,该时间建模利用先前帧的时间信息来增强3D对象检测。更具体地说,我们扩展了PETR中的3D位置嵌入(3D PE)进行时间建模。 3D PE可以在不同帧的对象位置上实现时间对齐。进一步引入了特征引导的位置编码器,以提高3D PE的数据适应性。为了支持高质量的BEV分割,PETRV2通过添加一组分割查询提供了简单而有效的解决方案。每个分割查询负责分割BEV映射的一个特定补丁。 PETRV2在3D对象检测和BEV细分方面实现了最先进的性能。在PETR框架上还进行了详细的鲁棒性分析。我们希望PETRV2可以作为3D感知的强大基准。代码可在\ url {https://github.com/megvii-research/petr}中获得。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
自然语言理解(NLU)模型倾向于依靠虚假的相关性(即数据集偏见)来在分布数据集上实现高性能,但在分布外部的数据集中的性能差。大多数现有的偏见方法通常都以偏见的特征(即引起这种虚假相关性的表面特征)来识别和削弱这些样品。但是,下降加权这些样品阻碍了从这些样品的无偏见部分学习的模型。为了应对这一挑战,在本文中,我们建议从特征空间的角度以细粒度的方式消除虚假的相关性。具体而言,我们引入了随机傅立叶特征和加权重采样,以将功能之间的依赖关系解释以减轻虚假相关性。在获得非相关的功能后,我们进一步设计了一种基于相互信息的方法来净化它们,这迫使模型学习与任务更相关的功能。对两个经过良好研究的NLU任务进行的广泛实验表明,我们的方法优于其他比较方法。
translated by 谷歌翻译
基础模型不是模型生产管道的最后一章。以少数数据以少数数据传输到数千个下游任务正在成为基础模型的应用的趋势。在本文中,我们提出了一个通用转移框架:一个传输所有(OTA),将任何视觉基础模型(VFM)转移到具有少数下游数据的下游任务。我们首先通过图像重新表示微调(IRF)将VFM传输到特定于任务特定模型,然后将知识从特定于任务的模型蒸馏到部署的模型,其中包含由下游图像引导的生成(DIGG)产生的数据。OTA在传输时没有对上游数据,VFM和下游任务的依赖性。它还为VFM研究人员提供了一种方法,以释放其上游信息,以便更好地转移,但由于隐私要求而没有泄漏数据。大规模实验在少数数据设置中验证我们方法的有效性和优越性。我们的代码将被释放。
translated by 谷歌翻译
过去几年的技术创新的巨大浪潮,标志着AI技术的进展,是深刻的重塑行业和社会。然而,在路上,一个关键的挑战等待着我们,即我们满足快速增长的情景的能力的能力受到收购培训数据的成本的严重限制。由于主流学习范式的局限性,这一困难的局面是基于主流学习范式的局限性:我们需要根据大量注释的数据以及通常从头来训练每个新场景的新模型。在解决这一基本问题时,我们超越并开发一个名为实习生的新学习范式。通过在多个阶段的来自多个来源的监控信号学习,培训的模型将产生强大的相互性。我们在26个众所周知的数据集中评估我们的模型,该数据集涵盖计算机视觉中的四类任务。在大多数情况下,我们的模型仅适用于目标域中的培训数据的10%,始终以完整的数据培训的对应物,通常由显着的边距。这是一个重要前景的重要一步,其中具有一般视觉能力的这种模型可以大大降低对数据的依赖,从而加速通过AI技术的采用。此外,围绕我们的新范式旋转,我们还介绍了一个新的数据系统,新的架构和新的基准,以及一起形成一般愿景生态系统,以开放和包容性的方式支持其未来的发展。
translated by 谷歌翻译